@article {122, title = {Historical biogeography of Boraginales: West Gondwanan vicariance followed by long-distance dispersal?}, journal = {Journal of Biogeography}, volume = {44}, year = {2017}, pages = {158{\textendash}169}, abstract = {

Aim To examine the historical biogeography of the Boraginales using molecular dating and ancestral area reconstruction. Location World-wide. Methods We constructed data sets that included all major clades of Boraginales and all orders of asterids using previously published sequences of four plastid markers (trnL-trnF, rps16, ndhF, rbcL). We estimated divergence times using a Bayesian uncorrelated, lognormal relaxed clock approach with four different fossil calibration schemes. Ancestral areas were reconstructed using maximum likelihood methods (Dispersal-Extinction-Cladogenesis). Results Boraginales originated during the Early to Late Cretaceous and started its diversification in the Late Cretaceous. The inferred ancestral area of Boraginales includes the Americas and Africa. The two major clades of Boraginales diversified during the Early Paleogene from African and American ancestors respectively. Early branching families in both clades (Codonaceae and Wellstediaceae in one clade and Hydrophyllacee and Namaceae in the other) may have remained restricted to their areas of origin. The other families started diversifying in several regions of the world during the Eocene (Boraginaceae s.str., Heliotropiaceae, Ehretiaceae) or later (Cordiaceae). Main conclusions Molecular dating and ancestral area reconstruction may be broadly consistent with the idea of a vicariant origin of the two major clades of Boraginales after the break-up of West Gondwana, followed by several independent trans-oceanic dispersal events into most areas of the world. However, uncertainty in both divergence times and ancestral area reconstruction do not rule out the possibility of an origin involving long-distance dispersal.

}, keywords = {Ancestral area reconstruction, Boraginaceae, historical biogeography, Molecular dating, vicariance, West Gondwana}, issn = {1365-2699}, doi = {10.1111/jbi.12841}, url = {http://onlinelibrary.wiley.com/doi/10.1111/jbi.12841/abstract}, author = {Luebert, Federico and Couvreur, Thomas L. P. and Marc Gottschling and Hilger, Hartmut H. and Miller, James S. and M. Weigend} } @article {9, title = {Multiple origins for Hound{\textquoteright}s tongues (Cynoglossum L.) and Navel seeds (Omphalodes Mill.) {\textendash} The phylogeny of the borage family (Boraginaceae s.str.)}, journal = {Molecular Phylogenetics and Evolution}, volume = {68}, year = {2013}, month = {2013/09//}, pages = {604 - 618}, abstract = {AbstractRecent studies all indicated that both the affinities and subdivision of Boraginaceae s.str. are unsatisfactorily resolved. Major open issues are the placement and affinities of Boraginaceae s.str. in Boraginales and the major clades of the family, with especially the large tribes Cynoglosseae and Eritrichieae repeatedly retrieved as non-monophyletic groups, and the doubtful monophyly of several larger genera, especially Cynoglossum and Omphalodes. The present study addresses and solves these questions using two plastid markers (trnL{\textendash}trnF, rps16) on the basis of a sampling including 16 outgroup taxa and 172 ingroup species from 65 genera. The phylogeny shows high statistical support for most nodes on the backbone and on the individual clades. Boraginaceae s.str. are sister to African Wellstediaceae, Wellstediaceae{\textendash}Boraginaceae s.str. is sister to African Codonaceae. Echiochileae are retrieved as sister to the remainder of Boraginaceae s.str., which, in turn, fall into two major clades, the Boragineae{\textendash}Lithospermeae (in a well-supported sister relationship) and the Cynoglosseae s.l. (including Eritrichieae). Cynoglosseae s.l. is highly resolved, with Trichodesmeae (incl. Microcaryum, Lasiocaryum) as sister to the remainder of the group. Eritrichieae s.str. (Eritrichium, Hackelia, Lappula) are resolved on a poorly supported polytomy together with the Omphalodes-clade (incl. Myosotidium, Cynoglossum p.p.), and the Mertensia-clade (incl. O. scorpioides, Asperugo). The Myosotideae (Myosotis, Trigonotis, Pseudomertensia) are retrieved in a well-supported sister-relationship to the core-Cynoglosseae, the latter comprising all other genera sampled. Cynoglossum is retrieved as highly para- and polyphyletic, with a large range of generic segregates embedded in Cynoglossum, but other species of Cynoglossum are sister to Microula or to the American {\textquotedblleft}Eritrichieae{\textquotedblright} (Cryptantha and allied genera). Representatives of the genus Cynoglossum in its current definition are segregated onto six independent lineages, members of Omphalodes onto three independent lineages. At least 11 of the genera here sampled are deeply nested in other genera. The data show that individual details of nutlet morphology (e.g., winged margins, glochidia) are highly homoplasious. Conversely, a complex of nutlet characters (e.g., characters of the gynobase and cicatrix together with nutlet orientation and sculpturing) tends to circumscribe natural units. Geographical distribution of major clades suggests that the family originated in Africa and western Asia and radiated to eastern Eurasia, with several independent dispersal events into Australia and the New World. }, keywords = {Boraginaceae, Nutlet morphology, Phytogeography}, isbn = {1055-7903}, url = {http://www.sciencedirect.com/science/article/pii/S1055790313001590}, author = {M. Weigend and Federico Luebert and Federico Selvi and Grischa Brokamp and HH Hilger} }